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1.0 INTRODUCTION

The classical transportation problem is well known for its widespread |
applicability and for the facility with which it can be solved. Many prc-
cedures have been developed for reformulating disparate linear programming
problans as transportation problans to take advantaje of the computational
efficiency inherent in the specializad transportation algoritim [2,3,8,10]). !
We generalize the concepts of an earlier paper [6] to show how constrained
transportation problems (i.e., transportation problems with additional
linear constraints) can be transfomed into pure transportation problems.
Our procedure determines if an arbitrary extra linear constraint can be
transfomed into an equivalent bounded partial sum of variables involving a
single node constraint. If this is possible the procedure gives the linear
transformation that yields the equivalent constraint. This extends the work of
Wagner (9], Manne [4,p. 382], and Charnes [1] who have shown how transportation
problems with these bounded partial sums can be reformulated into pure trans-
portation problems

It is conjectured that our transformation requires computational effort on
the same order as that required to find an initial basic solut':ion by Vogel's
Approximation Method. Since camputational results indicate that specialized
transportation codes can solve transportation problems at least 150 times
faster than general purpose linear programming codes [5], our results make it

possible to solve constrained transportation problems of the specified class with

substantially greater efficiency than by a general purpose alyorithm.

2.0 PROBLEM STATEMENT, MATHEMATICAL DEVELOPMENT, AND AN EXAMPLE

A transportation problem with one additional extra constraint ( a

singularly constrained transportation problem) can be stated mathematically

il ca e




as follows:
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where M = {1,2,...,m}, N ={1,2,...n}, 1 aj= & bj. In detached coefficient !
ieM JjeN
form the singularly constrained transportation problem appears as indicated in
Table 1. The coefficients (Pij) of the extra constraint appear below the familiar

echelon-diagonal structure of ones of the transportation problem.
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| Table 1. Detached Coefficient Form of Singularly
q Constrained Transportation Problems
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Our goal is to specify a camputationally simple procedure for identifying a
linear combination of the ordinary transportation constraints, if one exists, which
can be subtracted fram the extra constraint to produce an inc.uality that is equi-
valent to establishing a bound for a partial sum of variables associated with a
single origin or destination. Fram well known properties of the transportation
matrix, if there exists a linear cambination of the transportation constraints
that has the desired form, then a linear cambination can be found in which any
particular transportation constraint receives a zero weight. Thus, we may arbi-
trarily delete a node constraint when seeking such a linear cambination. Having
done this certain variables can be viewed as having only one entry in the coefficient
matrix for purposes of finding the desired linear cambination. To exploit these
facts in seeking a transformation of the singularly constrained transportation problem
into an ordinary transportztion problem, we arbitrarily amit the first origin con-
straints. Our principal observations are then contained in the following three cases.

Case a. Assume that the extra oconstraint is equivalent to a partial sum of

variables in a single origin constraint g other than origin 1 (i.e., the equivalent
extra oconstraint is of the fom I ox .=f for SCN as illustrated ia Table l).
Having set R, equal to 0, the unzége values for all the destination constraint mul-
tipliers can be determined using the equations R1+Kj=plj. This is possible by the
assumption that the equivalent oonstraint invoives variables in origin g#l (i.e.,
the coefficient on the variables X150 j=1,..., n in the equivalent constraint must
equal 0). By the same reasoning a unique origin multiplier can be found for avery
other origin except origin q. In origin g not all of the equations Rq + KJ = qu
can simultaneously be satisfied by a single value for Rq There will be two values,

one that satisfies the equation for a subset SCN and another that satisfies that

equation for the destinations in the subset N-S. By setting Rq equal to the
value Rq + Kj = Pyj for jeN-S a linear cambination of the standard node constraints
has been found which when subtracted riom the original extra constraint yields

a restriction on the partial sum of variables in origin constraint g associated

with the destinations in S. The equivalent constraint ¢ (p. .-R -I%) X .=
58 q] g q)

d- 1 Rja; - I Kjbj can be reduced to an equivalent partial sum by dividing
itM jeN




through by (qu-Rq - Kj) gince this expres3ion has the same value for all j.S.

Case b, Assume that the extra constraint is equivalent to a partial
sum of variables in a single destination q (i.e. the constraint is of the form
I Xjg® f for T& M as illustrated in Table 1), The appropriate linear
é;gbination for this case can be found in the same manner as in case a. After
the origin constraint wultiplier Ry is set equal to zero and the destination
constraint multipliers are determined using the equations Ry + Kj = pyj , the
remaining Ry values can be found. In every origin i that does not include
variables in the equivalent partial sum (i.e. for ieM-T), there exists a
unique value for Ry such that the constraints Ry + Kj = Pij will be satisfied
simuitaneously by a unique value for all j.-N. For those origins icT that have
a variable in common with the equivalent extra constraint, the equation Rj + Kj= pij
will be satisfied by a unique value for all j # q. Setting Rj, icT equal
to this unique value will provide the scalar multipliers for a linear com-
bination of the node constraints which when subtracted from the original extra
constraint yield an equivalent partial sum of variables in the single destination
constraint q associated with the origins in T. The equivalent constraint

Z_ (pjg~ Rj - Kgl xjq= d - & Rjaj- p; Kjbj can be reduced to an equivalent
ieT ieM JeN

partial sum by dividing through by (Piq'Ri -Kg) since this expression has

the same value for all ieT.

Case c. Assume the extra constraint is equivalent to a partial sum of

variables in origin constraint 1 (i.e. the constraint is : Xy 4= f for SeN
Je$

as illustrated in Table 1). Starting again with R1 equal to zero, the Kj
values for jeN are immediately determined. Since the equivalent partial sum

is assumed to be in origin 1, multipliers m:st be found to satisfy Rj Ky = Pij

iM. s finn e
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for all 1 ana j such that i#1 in order for these variables not to appear in the
equivalent constraint. However given the current values for KJ unique values
for Ry, 1 # 1 cannot be found, for if they could be then Ry + Kj = pyjj would
hold for all 1 and all j contradicting the assumption. Thus there must be two
possible values for each Ry, i # 1. Set these R, equal to the value that
satisfies R, + KJ = Py for jiN-S. Thus, R, + Kjfpij for i # 1 and for jeS.
Note, however, new values for Kj can be found that satisfy Ri + Kj = Py for
i# 1 and jeS. Thus by changing the appropriate Kj values after having
determined values for all Ry» one can find the linear combination of the

node constraints which when subtracted from the extra constraint leaves the

equivalent restriction (p1j'Kj) X14° d -z

B R.A; - £ K;bs.Since(py:-K:) is
JeS ieM ! 4 [

JcN‘J J
the same for all j¢S then dividing through by this quantity will yield the
equivalent partial sum.

Based on the reasoning just presented we can describe a general procedure
to effect the transformation as required in the three cases. It is convenient
to use a transportation tableau with the coefficients of the extra constraint
placed in the cell corresponding to the appropriate variable., This format is
illustrated in Table 2. Values for the R; and Kj multipliers are shown around
the rim of the tableau and can be determined in a manrer similar to that used

to find values for dual evaluators for a basic solution to a transportation

problem.
K K5l s 0
L S
l
Ro 1 Por i Poal: - - [P | %
N R
Rm Pmli ﬁnz T Pmn_J %m
1
5T, b,

Table 2, Tableau Representation
of an Extra Constraint




Our procedure for finding the appropriate lincar combination of the

oonstraints is:

Step 1.
Step 2.

Step 3.

Step 4.

Set R1 equal to zero.

For all jeN set Kj equal to P15

Try to detemmine a unique value for Ry using the equations

Ry + Ky = sz for all jeN.

a) If a unique value for Rp can be found set R; equal to this
value and proceed to step 4.

b) If the equations are not satisfied by a unique value of R, but i
all equations except q can e satisfied by a single value of R,,

set Ry so that the Ry + Kq # P2q and mark cell (2,q)with a "star",How-
ever, if this is not the case, and R2 nust assume two distinct values to
satisfy the equations for all j, set Ry cyual to either of two

values arbitrarily and "star" the cells for which R2+Kj# p2j‘ Proceed
to step 4.

c) If more than two values of R; are required to satisfy all the
equations, stop. The constraint is not equivalent to a partial sum

of variables in a single node constraint.

Continue determining values for the remaining R, as in step 2 except
when R; must assume two distinct values in order for the equations

Rj + Ky =pjy
that the starred cells in this row lie in the same columns as those i

to be satisfied for all j. In this case set R, S0

starred in earlier rows. If this cannot ix: donc, stop. ‘I'he conslrain

is not equivalent to a partial sum of variables in a single node

constraint. Also for any column r with starred cells check to see
that p; -R; = p, Ry for i#k where i and k are rows containing the
starred cells. If this is not the case for all i¥k, stop. Again

the constraint is not equivalent to a partial sum of variables in a




single node constraint.
Stup 5. After all R; have been determined, four cases are nossible.
i) the starrad cclls occur only in a single row.
1i) the starred ce.ls occur in all cells in a sublset of the
columne except tor the cells in row 1.
iii) the starred cells occur only in a single column.
iv) the starroed cells occur in some cells in a subset of the
columns but not in row 1 and not in some other row.
In case i the starred cells indicate the variables included in the equi-
valent partial sum of variables. For these starred cells the coefficient on
these variables in an euivalent constraint is Pij” R, =K;. After forming the

]
linear cambination feam the extra constraint only those terms will remain, Since |

Pij -R; -Kj will be the same for all starred cells. the equivalent partial sum

can be obtaired by dividing through by the coefficient on the variables,

In case ii the Kj values rfor the cclumns containing starred cells can be ﬁ
changed so that the aquation R;+ K:- = i holds for the starred cells. The effect :
is to "erase" the stars from these cells and place them in the cells in row 1 ]

in these columns. This is iow the same as case i.

In case iii the starred cells indicate the variabies in a single destination
constraint that camprisc an equivalent constraint. Since pj_j “R; - Kj will be
the same for all starred cells "he equivalent partial sum can be obtained by
dividing through by the coefficient of the variables.

In case iv the constraint is not equivalent to a partial sum of variables
in a single origin or destination constraint.

For cases i, ii, and iii we have found the coefficients of the variables

in an equivalent corstraint. The new right-hand side value can be found by

subtracting 5 Rjaj + I Kij fram the original right-hand side.
ieM jeN




We can sumnarize our results to this point in the following theorem.
Theoram: If an extra constraint is equivalent by a linear transformation
to a partial sum of variables in a single node constraint then the stated pro- ' ]
cedure finds the equivalent partial sum. |
Proof: The hypothesis allows us to assert that the equivalence can be
detemminea by a linear cambination of the node constraints of the transpor-
tation problem. The remainder of the proof is contained in cases a,b, and ¢ above.
A four origin, five destination constrained transportation problan is shown
in Table 3 with the coefficients of the extra constraint indicated in the cells
corresponding to the appropriate variables The associated supply and demand
values are shown along the rim of the table. Assume that the extra constraint

is an "equality" constraint with a right-hand side value of 84.

T
6 1714 (8|1 15
5 1615 ]9]0 10
(-1 jofrtsle | 10

DJemand 8 7 9 6 15
Table 3

By applying the procedure described above, the following R; amd lS mul-
f tipliers are obtained.
In step 1 R; is set equal to zero.
] In step 2 the K_, multipliers are set equal to the following values

Ky =0, Ky=1, K3 =0, Ky = 4, Kg = =5

In step 3 a unique value for R2 cannot be found to satisfy R, + Kj = P2j
for all j. The value 6 satisfies chat equation for py; and py, and the value

4 satisfies that equation for pp3, pyq and pyg. Arbitrarily set R, equal to

6 and star the cells and Pone




As required by step 4 Rj is set equal to 5 because this value satisfies

the equation R + Kj = P3j for all j. Similarly a value of R& -1 satisfies

Rg + Kj = P4j for all j. 'The results of the procedure to this point are shown

in 'Table 4,
Kp=0 Ky=1 Ky=0 Kg=4 Kg=-5  supply
Ry = 0 0 1 ] o 4 5 | 10
Ry =6 6 7 4 gv -1+ 15
Ry =5 5 6 5 9 o | 10
Rg=1 | -1 0 -1 3 -6 10
Demand 8 7 9 6 15
Table 4

To camplete the transformation next campute the values of (pij =Ry -K_-.)
for the starred cells, check that they are equal, and obtain the coefficients
for the variables in an equivalent constraint. In particular the left-hand
side of the equivalent constraint is =2xy3 + =2%y4 + ~2%s. The new right-

4 5
hard side value is found by the fcrmula (+84) - iil R: a;- jil Kby = 84 - (130)-
(-44) =-2. Dividing throughby -2, we obtain the equivalent partial sum
X3 +%yc= 1. Thus, by using the procedure described above we have found
a partial sum of variables in a single row equivalent to the original extra
constraint. The original transportation problam can he enlarged by one
source and one destination in the manner suggested by Wagner [9] ,and an optimal

solution to the original problan can be found using the transportation algoritim.

3.0 EXTENSIONS

In the develomment of the procedure for transforming extra constraints and
in the example the original extra constraint was assumed to be an "equality"

type. It should be clear that the same transformation can be made for both
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"less than or equal" and "areater than or equal" oconstraints., If there are
several extra oconstraints then the procedure can be applied to each one separ-
ately to obtain an equivalent partial sum for each extra constraint. Wagner
(9] has shown that if these partial sums involve disjoint sets of variables
and if the sets are nested in the same node constraints then the problem can

be transformed into an enlarged transportation problem.

4.0 APPLICATIONS

Many models have the structure of a transportation problem with additional
restrictions. The extra constraints may represent secondary objectives or
restrictions that are not reflected in trne standard node oconstraints. To
illustrate a typical example of this class of problems, consider the trans- ]

portation model where warehouses supply markets and the objective is the stan-

dard one of finding a shipping pattern that will minimize the total shipping
cost. Suppose additionally that the products shipped are of a fragile nature
and if they are sent via particular routes each item must be specially pack-
aged to prevent losses in shipping. Table 6 shows the packaging time in
minutes per unit required o prepare a unit for shipment on the various routes.
Suppose that we wish to limit the average packaging time per unit to at most
2-1/2 minutes per unit (i.e., for tie 60 units that must be shipped, the total
packaging time must not exceed 150 minutes). Using our procedure a linear
canbination of the node constraints of the transportation problems can be
found which when subtracted fram the original extra oconstraint yields an
equivalent partial sum of variables xj5+ X54 < 5. The node constraint
multipliers for the linear cambination are indicated in table 6. Thus the




Kj=0 Ky=1 K3=0 Kg=2 K =1 Supply }

Ry =0 0 1 0 2 1 10
R2 =1 1 3* 1 4* 2 20
R3 =3 3 4 3 5 4 20
R4 = 2 2 3 2 4 3 10 ;
i
Demand 15 10 5 5 25 60 Total ]
Table 6

2-1/2 minute average packaging time restriction can only be satisfied if the
total number of units shipped along routes (2,2) and (2,4) is less than or
equal to 5. The transportation problem can be transformed to include this
restriction directly,and thus the original constrained transportation problem

can be solved as a transportation problem witn one additional origin and one

additional destination.
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